Forgot password? New user? Sign up
Existing user? Log in
Let x∈R+x\in \mathbb{R}^{ + }x∈R+ and f(x)=576+x2−24x+49+x2−73xf\left( x \right) = \sqrt { 576+{ x }^{ 2 }-24x } +\sqrt { 49+{ x }^{ 2 }-7\sqrt { 3 } x } f(x)=576+x2−24x+49+x2−73x.
If we set xxx positive variable in such a way that f(x)f\left( x \right) f(x) is Minimum possible, then for this condition, find the value of E=336−243x−7x4.E\quad =\quad \frac { 336-24\sqrt { 3 } x -7x }{ 4 } .E=4336−243x−7x.
Problem Loading...
Note Loading...
Set Loading...