Forgot password? New user? Sign up
Existing user? Log in
Sn(x)=∑r=1n⌊rx⌋ S_n(x) = \sum_{r=1}^{n} \lfloor rx \rfloor Sn(x)=r=1∑n⌊rx⌋
For x x x ∈R \in \mathbb{R} ∈R, define Sn(x)S_n(x) Sn(x) as above.
Evaluate
⌊limn→∞Sn(x)n2∣x=2015.20162017⌋.\displaystyle \left\lfloor \left. \lim_{n \to \infty } \frac{S_n(x)}{n^2} \right|_{x = 2015.20162017} \right\rfloor.⌊n→∞limn2Sn(x)∣∣∣∣x=2015.20162017⌋.
Problem Loading...
Note Loading...
Set Loading...