\[S=\sum_{n=1}^{\infty}\frac{\sigma_2(n)}{n^6}\]

Let \(\sigma_2(n)\) denote the sum of the squares of all the positive integer divisors of \(n\). For example, \(\sigma_2(6)=1^2+2^2+3^2+6^2=50\).

Enter \(\dfrac{\pi^{10}}{S}\) as your answer.

×

Problem Loading...

Note Loading...

Set Loading...