# One x, two x, three x

**Geometry**Level 3

If \(\sin {x} = -13\cos{x}\). Then, the value of

\(\begin{align} \frac{\sin {x} + \sin{2x} + \sin{3x}}{\cos{x}+\cos{2x}+\cos{3x}} \end{align}\)

can be expressed in the form \(\frac{a}{b}\), where \(a\) and \(b\) are positive coprime integers. What is the value of \(a+b\)?