Let \(x_1, x_2, x_3, \ldots \) be all the distinct positive integers satisfying \(\phi(x) = \dfrac x3\).

Compute \(\dfrac1{x_1} + \dfrac1{x_2} + \dfrac1{x_3} + \cdots \).

\(\)

**Notation:** \(\phi(\cdot) \) denotes the Euler's totient function.

×

Problem Loading...

Note Loading...

Set Loading...