Level
pending

\(\begin{equation} \displaystyle \prod_{k=1}^{999} (x^2-47x+k) = (x^2-47x+1)(x^2-47x+2)\dots(x^2-47x+999)\end{equation}\)

If the product of all **real** roots of the polynomial above can be expressed as \(n!\), what is the value of \(n\)?

×

Problem Loading...

Note Loading...

Set Loading...