Optimizing the "Cool Function"

Algebra Level 5

Let the Cool Function \(f\) be defined from the positive reals by \(f(x,y,z,t) = \frac{(x^{2} + 2x + 1)(y^{2} + 2y + 1)(z^{2} + z + 1)(t^{2} + t + 1)}{xyzt}\) Find the minimum value of \(f\).

×

Problem Loading...

Note Loading...

Set Loading...