$S = \displaystyle \sum_{n=1}^{\infty} \dfrac{\sigma_{4}(n)}{n^{8}}$

Find $\dfrac{\pi^{12}}{S}$.

**Notation**: $\sigma_x(n)$ denotes the sum of the $x^\text{th}$ powers of the positive divisors of $n$.

**Hint**: Use Bernoulli numbers to calculate the value of Riemann Zeta function.
.

×

Problem Loading...

Note Loading...

Set Loading...