\((p-1)^\text{th}\) Harmonic Number for Odd Prime \(p\)

Let \(p\) be an odd prime and \[\large \dfrac{A_p}{B_p}=1+\dfrac{1}{2}+\dfrac{1}{3}+\cdots +\dfrac{1}{p-1},\] where \(A_p\) and \(B_p\) are coprime positive integers.

Enter the sum of all possible odd primes \(p\leq50\) such that \(A_p \equiv 0 \pmod{p}\).

×

Problem Loading...

Note Loading...

Set Loading...