\[\begin{cases} x=\dfrac{4\alpha }{1+\alpha ^2} \\ y=\dfrac{2-2\alpha ^2}{1+\alpha ^2} \end{cases} \]

If reals \(x\) and \(y\) satisfy the system of equations above for real parameter \(\alpha\). Find the range \(x^2-xy+y^2\) lies within.

×

Problem Loading...

Note Loading...

Set Loading...