Part 3

Discrete Mathematics Level pending

Calculate \[\large M=\sum \frac{1}{k_{1}!k_{2}!...k_{2016}!(k_{2}+2k_{3}+3k_{4}+...+2015k_{2016})!}\] where the sum is taken over all 2016-upples of natural numbers\[\large (k_{1},k_{2},k_{3}....,k_{2016})\] satisfying \[\large k_{1}+2k_{2}+3k_{3}+...+2016k_{2016}=2016\] If the answer is \[\frac{a}{b}\times \begin{pmatrix} c+d &\\ e & \end{pmatrix}\] Type \(S=a+b \)

×

Problem Loading...

Note Loading...

Set Loading...