Forgot password? New user? Sign up
Existing user? Log in
p(17)=297p(18)=385p(19)=490p(20)=627p(21)=792 \begin{aligned} p(17) &= 297 \\ p(18) &= 385 \\ p(19) &= 490 \\ p(20) &= 627 \\ p(21) &= 792 \end{aligned} p(17)p(18)p(19)p(20)p(21)=297=385=490=627=792
Let p(n) p(n) p(n) be the number of partitions of an integer n nn. The values of p(17),p(18),p(19),p(20),p(21)p(17), p(18),p(19),p(20), p(21) p(17),p(18),p(19),p(20),p(21) are as shown above.
How many partitions of 20 are there that do not contain any parts equal to 1?
Problem Loading...
Note Loading...
Set Loading...