Forgot password? New user? Sign up
Existing user? Log in
∏i=122015(20152i+19952i) \Large \prod_{i=1}^{2^{2015}} \left( \sqrt[2^i]{2015} + \sqrt[2^i]{1995} \right) i=1∏22015(2i2015+2i1995)
Given that the reciprocal of the product above can be expressed as 1d(a1/2b−c1/2b)\large \dfrac 1d \left( a^{1/2^b} - c^{1/2^b} \right) d1(a1/2b−c1/2b) where a,b,ca,b,ca,b,c and ddd are positive integers. What is the value of clog2(b)+5alog2(bd)?\large \dfrac{c \log_2( b) + 5a}{\log_2 (b^d)}? log2(bd)clog2(b)+5a?
Try to solve this one
Problem Loading...
Note Loading...
Set Loading...