Forgot password? New user? Sign up
Existing user? Log in
Given that
{f(x)=xg(x)=∣1−f(x)∣h(x)=2−g(x)L(x)=h(∣x∣)+∣h(x)∣\begin{cases} f (x) = x \\ g (x) = | 1 - f (x) | \\ h (x) = 2 - g (x) \\ L (x) = h (|x|) + | h (x) | \end{cases} ⎩⎪⎪⎪⎨⎪⎪⎪⎧f(x)=xg(x)=∣1−f(x)∣h(x)=2−g(x)L(x)=h(∣x∣)+∣h(x)∣
What is the number of points where L(x)L (x)L(x) is non-differentiable?
Problem Loading...
Note Loading...
Set Loading...