Forgot password? New user? Sign up
Existing user? Log in
∑n=1∞13n,∑n=1∞n3n,∑n=1∞n23n,∑n=1∞n33n \sum_{n=1}^\infty \dfrac1{3^n} , \quad \sum_{n=1}^\infty \dfrac n{3^n} , \quad \sum_{n=1}^\infty \dfrac{n^2} {3^n} , \quad \sum_{n=1}^\infty \dfrac{n^3}{3^n} n=1∑∞3n1,n=1∑∞3nn,n=1∑∞3nn2,n=1∑∞3nn3
Using method of differences, one can prove that none of the above series is an integer.
Is it also true that ∑n=1∞n43n \displaystyle \sum_{n=1}^\infty \dfrac{n^4}{3^n} n=1∑∞3nn4 is not an integer?
Problem Loading...
Note Loading...
Set Loading...