Power of 3

33=2734=8135=24336=72937=218738=6561\begin{array} { r c r } 3^3 &=& {\color{#D61F06}{2}}7 \\ 3^4 &=& {\color{#D61F06}{8}}1 \\ 3^5 &=& 2{\color{#D61F06}{4}}3\\ 3^6 &=& 7{\color{#D61F06}{2}}9\\ 3^7 &=& 21{\color{#D61F06}{8}}7 \\ 3^8 &=& 65{\color{#D61F06}{6}}1 \end{array}

The above shows the first few powers of 3, starting from 333^3. Is it true that the second last digit (from the right) of 3n3^n for integers n(>2)n\,(> 2) is always an even number?

×

Problem Loading...

Note Loading...

Set Loading...