Prime Octet 2

A=16!+1E=16!+5B=16!+2F=16!+6C=16!+3G=16!+7D=16!+4H=16!+8\begin{array}{cc} \Large &\color{#D61F06}A \color{#333333} = 16! + 1 &&\color{teal}E \color{#333333} = 16! + 5 \\ \Large &\color{#EC7300}B \color{#333333} = 16! + 2 &&\color{#3D99F6}F \color{#333333} = 16! + 6 \\ \Large &\color{gold}C \color{#333333} = 16! + 3 &&\color{#BA33D6}G \color{#333333} = 16! + 7 \\ \Large &\color{#20A900}D \color{#333333} = 16! + 4 &&\color{#69047E}H \color{#333333} = 16! + 8 \end{array}

How many of the above eight numbers are prime?


Note: Calculators not allowed!


Inspiration - Prime Octet (Solve it first.)

×

Problem Loading...

Note Loading...

Set Loading...