Primitive Modular Quadratics. Part III

Algebra Level 3

\[\text{Let} : \quad \begin{cases} \quad f(x)=x^2-6x-16 \\ \ \ \ \ g(x)=f(|x|) \\ \ \ \ \ h(x)=|g(x)| \end{cases} \]

Find the value of \(\lfloor B \rfloor\) such that the equation \(h(x)-B=0\) has exactly \(8\) real and distinct roots.

×

Problem Loading...

Note Loading...

Set Loading...