\[ \dfrac1{(x+1)(x+2)\cdots(x+999) } \]

The partial fraction decomposition of the expression above can be expressed as \(\displaystyle \sum_{m=1}^{999} \dfrac {a_m}{x+m}\) for some \(a_1, a_2, \ldots , a_{999}\).

If \(\max \{|a_1|, |a_2|, \ldots, |a_{999}|\} = \dfrac{1}{(Q!)^2} \), find \(Q\).

**Notations**:

- \( | \cdot | \) denotes the absolute value function.
- \(!\) denotes the factorial notation. For example, \(8! = 1\times2\times3\times\cdots\times8 \).

×

Problem Loading...

Note Loading...

Set Loading...