Forgot password? New user? Sign up
Existing user? Log in
(xyyyxyyyz)(abc)=(a′b′c′)\begin{pmatrix}x & y & y \\ y & x & y \\ y & y & z \end{pmatrix}\begin{pmatrix}a \\ b \\ c \end{pmatrix} = \begin{pmatrix}a' \\ b' \\ c' \end{pmatrix}⎝⎛xyyyxyyyz⎠⎞⎝⎛abc⎠⎞=⎝⎛a′b′c′⎠⎞ If the above equation holds true, then there exist coprime positive integers x,y,zx, y, zx,y,z such that any Pythagorean triple (a,b,c)(a, b, c)(a,b,c) produces another Pythagorean triple (a′,b′,c′).\big(a', b', c'\big).(a′,b′,c′).
Find the sum of such x,y,x, y,x,y, and z.z.z.
Problem Loading...
Note Loading...
Set Loading...