# Quadratic equation, only one real root.

**Algebra**Level 3

\[\dfrac{2a^2+x^2}{a^3-x^3}-\dfrac{2x}{ax+a^2+x^2}+\dfrac{1}{x-a}=0\]

Find the real values of \(a\) for which there exists a unique real solution to the above equation.

\[\dfrac{2a^2+x^2}{a^3-x^3}-\dfrac{2x}{ax+a^2+x^2}+\dfrac{1}{x-a}=0\]

Find the real values of \(a\) for which there exists a unique real solution to the above equation.

×

Problem Loading...

Note Loading...

Set Loading...