# Quadratics can be dirty! Really?

**Algebra**Level 5

Let \[A= \{ x|x^2+(m-1)x-2(m+1)=0, x \in R \} \]

\[B= \{ x|x^2(m-1)+mx+1=0, x \in R \} \]

Number of values of \(m\) such that \(A\cup B\) has **exactly** 3 distinct elements, is

Let \[A= \{ x|x^2+(m-1)x-2(m+1)=0, x \in R \} \]

\[B= \{ x|x^2(m-1)+mx+1=0, x \in R \} \]

Number of values of \(m\) such that \(A\cup B\) has **exactly** 3 distinct elements, is

×

Problem Loading...

Note Loading...

Set Loading...