Forgot password? New user? Sign up

Existing user? Log in

$S=\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}\sum_{k=1}^{\infty}\sum_{l=1}^{\infty}\dfrac{(-1)^{i+j+k+l}}{i+j+k+l}=\log(a)-\dfrac{a}{b}$ $a,b$ are co-prime positive integers. Find $a+b$.

NOTE : $S$ does converge.

Problem Loading...

Note Loading...

Set Loading...