How many distinct real roots \(x\) satisfy the determinant

\[ \left | \begin{array}{ccc} \sin x & \cos x & \cos x\\ \cos x& \sin x & \cos x\\ \cos x & \cos x& \sin x \\ \end{array} \right |=0 \] lie in the interval \([-\frac{\pi}{4},\frac{\pi}{4}]\) ?

×

Problem Loading...

Note Loading...

Set Loading...