Question 2

Algebra Level 3

{bcdefa=4acdefb=9abdefc=16abcefd=14abcdfe=19abcdef=116\left\{ \begin{array}{l} \frac{{bcdef}}{a} = 4\\ \frac{{acdef}}{b} = 9\\ \frac{{abdef}}{c} = 16\\ \frac{{abcef}}{d} = \frac{1}{4}\\ \frac{{abcdf}}{e} = \frac{1}{9}\\ \frac{{abcde}}{f} = \frac{1}{{16}} \end{array} \right. Positive numbers a,b,c,d,e,fa,b,c,d,e,f satisfy the formulas above. Find the value of (a+c+e)(b+d+f)(a+ c + e) - (b + d + f)

×

Problem Loading...

Note Loading...

Set Loading...