# R vs L

**Calculus**Level pending

Let \( f(x) \) defined on \( [x,\infty] \) with \( f(x) = \frac{\sin(x)}{x} \) for \( x \in (0, \infty) \) and \( f(0) = 0 \)

\( f : [0,\infty) \rightarrow \mathbb{R} \)

Then: Which of these statements is true for \( f \) ?

Additional Information:

R := Riemann;

L := Lebesgue