# Ramanujan's nested radical is great! (2)

**Algebra**Level 5

\[\large \frac{2016\sqrt{2016\sqrt[3]{2016\sqrt[4]{2016\sqrt[5]{2016\cdots}}}}}{\sqrt{2016\sqrt{2016\sqrt{2016\sqrt{2016\sqrt{2016\cdots}}}}}}=2016^{e+x}\]

Find \(x\) which satisfies the above equation.

**Hint**: Consider the infinite sum series of \(e\)

**Clarification**: \(e \approx 2.71828\) denotes the Euler's number.