There are n pirates (Pn,Pn−1,⋯P1) with the strict order of superiority (Pn>Pn−1>⋯>P1).
They find 100 gold coins. They must distribute the coins among themselves according to the following rules:
- The superior-most surviving pirate proposes a distribution.
- The pirates, including the proposer, then vote on whether to accept this distribution.
- In case of a tie vote the proposer has the casting vote.
- If the distribution is accepted, the coins are disbursed and the game ends. If not, the proposer is thrown overboard from the pirate ship and dies (leaving behind (n−1) pirates and their original ordering), and the next most superior pirate makes a new proposal to begin the game again.
Every pirate knows that every other pirates is perfectly rational, which means:
- They will always be able to deduce something logically deducible.
- Their first preference is that they want to survive.
- Their second preference is that they want to maximize the number of coins they receive.
- Other things remaining same, they prefer to kill a pirate rather than having him alive.
What is the minimum value of n such that the superior-most pirate can propose no distribution of coins that will let him survive?