Forgot password? New user? Sign up
Existing user? Log in
Let set A={x∣x=a2+b2,a,b∈Z}A=\{x|x=a^2+b^2, a,b \in \mathbb Z\}A={x∣x=a2+b2,a,b∈Z}.
If x1,x2∈Ax_1,x_2 \in Ax1,x2∈A, is it always true that x1⋅x2∈Ax_1 \cdot x_2 \in Ax1⋅x2∈A?
Reach for the Summit problem set - Mathematics
Problem Loading...
Note Loading...
Set Loading...