Forgot password? New user? Sign up
Existing user? Log in
A sequence {an}\{a_n\}{an} is such that a1=1a_1=1a1=1, a2=3a_2=3a2=3, a3=6a_3=6a3=6, and an=3an−1−an−2−2an−3\ a_n=3a_{n-1}-a_{n-2}-2a_{n-3} an=3an−1−an−2−2an−3 for n≥4n \ge 4n≥4.
If an>λ×2n−2a_n>\lambda \times 2^{n-2}an>λ×2n−2 for all n≥4n \ge 4n≥4, find the maximum integer value of λ\lambdaλ.
Reach for the Summit problem set - Mathematics
Problem Loading...
Note Loading...
Set Loading...