Recurring Styles 8 - Floor Function!

Algebra Level 5

\[\large{S= \dfrac{x_1}{x_2} + \dfrac{x_2}{x_3} + \ldots + \dfrac{x_{2014}}{x_{2015}} + \dfrac{x_{2015}}{x_{2016}} }\]

Define a sequence \(\large{(x_n)_{n \geq 1} }\) by \(x_1 = \dfrac{1}{2015}\) and \(x_{n+1} = x_n + x_n^2\). Determine the value of \(\lfloor S \rfloor\).

×

Problem Loading...

Note Loading...

Set Loading...