Forgot password? New user? Sign up
Existing user? Log in
Let ana_nan be a recursive function satisfying an=an−1+2n−1a_n=a_{n-1}+2n-1an=an−1+2n−1 for all positive integers nnn, and a0=0a_0=0a0=0. What is the value of ∑n=1100an\displaystyle \sum _{n=1}^{100}a_nn=1∑100an?
Try Part II
Problem Loading...
Note Loading...
Set Loading...