Forgot password? New user? Sign up
Existing user? Log in
It is certain that the infinite sum of Fibonacci numbers is infinite. Consider this sum:
∑n=1∞Fn2n+1.\sum _{ n=1 }^{ \infty }{ \frac { { F }_{ n } }{ { 2 }^{ n+1 } } } .n=1∑∞2n+1Fn.
If F1=1,F2=1,F3=2,...etc{F}_{1} = 1, {F}_{2} = 1, {F}_{3} = 2, ... etcF1=1,F2=1,F3=2,...etc, what is the value of the above sum?
Problem Loading...
Note Loading...
Set Loading...