# Reflect on this...

**Geometry**Level 5

A square \(ABCD\) of side length \(k\) contains unit circles at each of corners \(B\) and \(D\) such that each circle is tangent to the square at precisely two points. A ray of light emanating from point \(A\) reflects off each circle and then returns to \(A\), creating a path in the shape of an equilateral triangle.

There is a unique value of \(k\) for which this scenario can occur. Find \(\lfloor 10000\cdot k \rfloor\).

Note: "Reflecting" means that the angle of incidence equals the angle of reflection.

**Your answer seems reasonable.**Find out if you're right!

**That seems reasonable.**Find out if you're right!

Already have an account? Log in here.