Forgot password? New user? Sign up
Existing user? Log in
{(1+x)(1+x2)(1+x4)=1+y7(1+y)(1+y2)(1+y4)=1+x7 \begin{cases} \begin{aligned} (1 + x)\big(1 + x^2\big)\big(1 + x^4\big) &= 1 + y^7 \\\\ (1 + y)\big(1 + y^2\big)\big(1 + y^4\big) &= 1 + x^7 \end{aligned} \end{cases}⎩⎪⎨⎪⎧(1+x)(1+x2)(1+x4)(1+y)(1+y2)(1+y4)=1+y7=1+x7
Find the number of ordered pairs of real numbers (x,y)(x, y)(x,y) for which the above system of equations is satisfied.
Problem Loading...
Note Loading...
Set Loading...