\[ \large \dfrac{1}{2 \pi \hbar}\iint\limits_{\mathbb{R}^2} \left (q-\frac{x}{2} \right )ke^{\frac{i}{\hbar}(p-k)x} \, dx dk\]

Let be \(p\), \(q\) are real parameters; \(\hbar\) denotes the Planck's constant, but for this exercise, you can treat it as another (real) parameter. Evaluate the integral above.

**Clarification**: \(\displaystyle \iint\limits_{\mathbb{R}^2}\) simply means \(\displaystyle \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\).

**Hint**: Fourier transform.

×

Problem Loading...

Note Loading...

Set Loading...