Forgot password? New user? Sign up

Existing user? Log in

$\large f(x)=x^{100}+a_{99}x^{99}+\ldots+a_{1}x+a_{0}$

Let $f(x)$ be a 100th degree polynomial such that $a_{99}=-10,$ $a_{98}=5$ and $a_{97}=-2$ with roots $x_{1}, x_{2}, x_{3}, \ldots x_{100}$. Evaluate$\displaystyle \sum_{k=1}^{100} x_{k}^3$.

Problem Loading...

Note Loading...

Set Loading...