Forgot password? New user? Sign up
Existing user? Log in
A set of four distinct real numbers is called round if it satisfies {x12+x2=2,x22+x3=2,x32+x4=2,x42+x1=2, \begin{cases} x_1^2+x_2=2,\\ x_2^2+x_3=2,\\ x_3^2+x_4=2,\\ x_4^2+x_1=2,\\ \end{cases} ⎩⎪⎪⎪⎨⎪⎪⎪⎧x12+x2=2,x22+x3=2,x32+x4=2,x42+x1=2, and x1=min(x1,x2,x3,x4) x_1 = \min (x_1, x_2, x_3, x_4 ) x1=min(x1,x2,x3,x4).
How many round sets are there?
Problem Loading...
Note Loading...
Set Loading...