\[\large 7 -\sqrt7 + \sqrt[3]{7} - \sqrt[4]{7} + \sqrt[5]{7} - \cdots \]

The series \(\displaystyle \sum_{j=1}^{\infty} a_j\) is said to be **Cesàro summable**, with Cesaro Sum \(A\), if the average value of its partial sums \(\displaystyle s_k=\sum_{j=1}^k a_j\) tends to \(A\), meaning that \(\displaystyle A=\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^ns_k \).

Is the series above Cesàro summable?

×

Problem Loading...

Note Loading...

Set Loading...