Russelle's triple tangent

Algebra Level 4

Let x,y,zx, y, z be the real roots of the cubic equation

2u3799u2400u1=02u^3-799u^2-400u-1=0

and let ω=tan1x+tan1y+tan1z\omega = \tan^{-1} x+\tan^{-1} y+\tan^{-1} z. If tanω=ab\tan \omega = \frac{a}{b}, where aa and bb are positive coprime integers, what is the value of a+ba+b?

This problem is posed by Russelle G.

×

Problem Loading...

Note Loading...

Set Loading...