Russianal expressions 2015

Algebra Level 3

The result of evaluating \(\displaystyle\left ( \dfrac{\dfrac{x^{3}-1}{x+1}\cdot\dfrac{x}{x^{3}+1}}{\dfrac{(x+1)^{2}-x}{(x-1)^{2}+x}\cdot\left (1-\dfrac{1}{x}\right )} \right )^{\dfrac{-1}{2}}\) at \(x = 2015\) can be represented in the form \( \displaystyle\dfrac{a}{b}\), where a and b only share the factor 1. What is \( a+b \)?

×

Problem Loading...

Note Loading...

Set Loading...