Russianal Limits

Calculus Level 1

If \( L=\displaystyle \lim_{x \rightarrow 0} \frac{\sqrt{x^{2} + 2014^{2}}-2014}{\sqrt{x^2+2015^{2}}-2015}\), and \(L\) can be represented in the form \(\dfrac{a}{b}\), find \(a-b\). Ensure that \(a\) and \(b\) are relatively prime.

×

Problem Loading...

Note Loading...

Set Loading...