SAT1000 - P156

Algebra Level 4

Let f1(x)=x2,f2(x)=2(xx2),f3(x)=13sin2πxf_1(x)=x^2, f_2(x)=2(x-x^2), f_3(x)=\dfrac{1}{3}|\sin 2\pi x|.

If Ik=i=199fk(i99)fk(i199)I_k=\displaystyle \sum_{i=1}^{99} |f_k(\dfrac{i}{99})-f_k(\dfrac{i-1}{99})|, compare I1,I2,I3I_1, I_2, I_3.

A. I1<I2<I3A.\ I_1<I_2<I_3

B. I2<I1<I3B.\ I_2<I_1<I_3

C. I1<I3<I2C.\ I_1<I_3<I_2

D. I3<I2<I1D.\ I_3<I_2<I_1


Have a look at my problem set: SAT 1000 problems

×

Problem Loading...

Note Loading...

Set Loading...