Forgot password? New user? Sign up
Existing user? Log in
Given the function f(x)=sin(ωx+ϕ) (ω>0,∣ϕ∣≤π2)f(x)= \sin(\omega x+\phi)\ (\omega>0, |\phi| \leq \dfrac{\pi}{2})f(x)=sin(ωx+ϕ) (ω>0,∣ϕ∣≤2π), f(−π4)=0,f′(π4)=0f(-\dfrac{\pi}{4})=0, f'(\dfrac{\pi}{4})=0f(−4π)=0,f′(4π)=0, and f(x)f(x)f(x) is strictly monotone on the interval (π18,5π36)(\dfrac{\pi}{18}, \dfrac{5\pi}{36})(18π,365π), then find the maximum value of ω\omegaω.
Have a look at my problem set: SAT 1000 problems
Problem Loading...
Note Loading...
Set Loading...