SAT1000 - P320

Geometry Level pending

Given the function f(x)=sin(ωx+ϕ) (ω>0,ϕπ2)f(x)= \sin(\omega x+\phi)\ (\omega>0, |\phi| \leq \dfrac{\pi}{2}), f(π4)=0,f(π4)=0f(-\dfrac{\pi}{4})=0, f'(\dfrac{\pi}{4})=0, and f(x)f(x) is strictly monotone on the interval (π18,5π36)(\dfrac{\pi}{18}, \dfrac{5\pi}{36}), then find the maximum value of ω\omega.


Have a look at my problem set: SAT 1000 problems

×

Problem Loading...

Note Loading...

Set Loading...