SAT1000 - P321

Geometry Level pending

Given the function f(x)=sin(ωx+π3) (ω>0)f(x)=\sin(\omega x + \dfrac{\pi}{3})\ (\omega>0), f(π6)=f(π3)f(\dfrac{\pi}{6})=f(\dfrac{\pi}{3}).

If f(x)f(x) has minimum value but no maximum value on the interval (π6,π3)(\dfrac{\pi}{6},\dfrac{\pi}{3}), then find the value of ω\omega.

If ω=ab\omega=\dfrac{a}{b}, where a,ba,b are positive coprime integers. submit a+ba+b.

Have a look at my problem set: SAT 1000 problems


Problem Loading...

Note Loading...

Set Loading...