See it carefully!

Algebra Level 5

\[ \left(z + \dfrac{1}{z}\right) + \left(z^2 + \dfrac{1}{z^2}\right)^2 + \left(z^3 + \dfrac{1}{z^3}\right)^3 + \cdots + \left(z^{10} + \dfrac{1}{z^{10}}\right)^{10} \]

If \(z\) is a complex number satisfying \(z^2 + z + 1 = 0\), then what is the value of the expression above?


Original problem
×

Problem Loading...

Note Loading...

Set Loading...