# Sequential limit.

**Calculus**Level 4

Let \(\{a_n\}\) be a sequence such that \(a_1\in (0,1)\), and for any \(n\geq 1\) : \[a_{n+1}= a_n(1-a_n).\]

Find the value of

\[\lim_{n\to +\infty} \frac{n(1-na_n)}{\ln n}.\]

Let \(\{a_n\}\) be a sequence such that \(a_1\in (0,1)\), and for any \(n\geq 1\) : \[a_{n+1}= a_n(1-a_n).\]

Find the value of

\[\lim_{n\to +\infty} \frac{n(1-na_n)}{\ln n}.\]

×

Problem Loading...

Note Loading...

Set Loading...