Sequential limit.

Calculus Level 5

Let {an}\{a_n\} be a sequence such that a1(0,1)a_1\in (0,1), and for any n1n\geq 1 : an+1=an(1an).a_{n+1}= a_n(1-a_n).

Find the value of

limn+n(1nan)lnn.\lim_{n\to +\infty} \frac{n(1-na_n)}{\ln n}.

×

Problem Loading...

Note Loading...

Set Loading...