Forgot password? New user? Sign up

Existing user? Log in

Let $\{a_n\}$ be a sequence such that $a_1\in (0,1)$, and for any $n\geq 1$ : $a_{n+1}= a_n(1-a_n).$

Find the value of

$\lim_{n\to +\infty} \frac{n(1-na_n)}{\ln n}.$

Problem Loading...

Note Loading...

Set Loading...