The length of the graph of \(|||x|-a|-b|+|||y|-a|-b|=1 \) can take \(n\) possible values for positive integers \(a\) and \(b\). Let the sum of all these values be \(S\).

Find the value of \(\dfrac1n \left( {\dfrac{S}{\sqrt{2}}+1}\right) \).

×

Problem Loading...

Note Loading...

Set Loading...