Forgot password? New user? Sign up
Existing user? Log in
Consider the cubic equation 245x3−287x2+99x−9=0 245x^3 - 287x^2 + 99x - 9 = 0 245x3−287x2+99x−9=0 with roots α,β,γ \alpha , \beta , \gamma α,β,γ. If
∑r=0∞(αr+βr+γr) \displaystyle\sum_{r=0}^{\infty} \left ( \alpha^{r} + \beta^{r} + \gamma^{r} \right ) r=0∑∞(αr+βr+γr)
is of the form mn \frac {m}{n} nm, where mmm and nnn are coprime positive integers, what is value of mn+1? \frac {m}{n+1}?n+1m?
Problem Loading...
Note Loading...
Set Loading...