Shuffleboard physics (I)

Table shuffleboard is a game (usually found in higher quality bars) in which a heavy puck is glided down a long table toward an end zone. Points are scored by getting the puck to come to rest as close to the edge as possible, the closer the puck, the higher the reward.

If the puck slides off the end of the table, however, the player gets zero points. In the table shown below, three points are awarded for the far zone, one for the near zone, and zero if the puck doesn't cross the first line.

Crudely, the difficulty DD of making it into each zone is proportional to 1/Δs1/\Delta s, the range of allowable speeds between which the puck still stop inside the given zone. For example, if the puck is released with speed s3maxs_3^\textrm{max}, it will stop just before falling off the end of the table, and if released with speed s3mins_3^\textrm{min}, it will stop just inside the three point zone, and Δs3=s3maxs3min\Delta s_3 = s_3^\textrm{max} - s_3^\textrm{min}.

Suppose the puck and the table have a coefficient of kinetic friction given by μk\mu_k, and that the puck is pulled down by the acceleration due to gravity, gg. How much more difficult is it to get the puck to stop in the three point zone than in the one point zone? In other words, find

D3D1=Δs1Δs3\frac{D_3}{D_1} = \frac{\Delta s_1}{\Delta s_3}


  • d0=15d_0=15 m
  • l=5l=5 m

Problem Loading...

Note Loading...

Set Loading...